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Abstract
The gamma distribution has been shown to be the simplest function for describing the universal
size distribution function of InAs quantum dots on GaAs(001) substrate (Fanfoni et al 2007
Phys. Rev. B 75 245312), although there is no reason to believe that it could not be applied to
any film growth where the principal feeding of the islands occurs through surface diffusion as
proposed, after numerical simulations in the two-dimensional case, by Mulheran and Blackman
(1995 Phil. Mag. Lett. 72 55). As far as InAs/GaAs(001) quantum dots are concerned, by
fitting the data of Ebiko et al (1999 Phys. Rev. B 60 8234) and Krzyzewski et al (2002 Phys.
Rev. B 66 201302(R)) to the gamma function, β = 4.5 and 2.9 are the respective returned
values. The latter value appears anomalous because for a Poissonian distribution of points
(centers of islands), β = 3.5–3.6. Moreover, the greater the spatial correlation the greater the
β value. We prove that the presence of steps alters the distribution of nucleation centers
throughout the substrate in such a way that its variance increases with respect to the substrate
without steps and, as a consequence, β decreases.

(Some figures in this article are in colour only in the electronic version)

The scale invariance of the nucleus distribution function
which emerges during thin film formation has been widely
discussed in the literature and was first proposed after
a thorough theoretical and numerical analysis for two-
dimensional (2D) islands [1–5]. Experimental corroborations
soon followed [6–8]. The central result of this analysis can be
summed up by the following relation:

Ns(�) = �

〈s〉2
f

(
s

〈s〉
)

, (1)

where Ns is the number density per site of islands of average
size 〈s〉 at coverage � and f ( s

〈s〉 ) is the scaling function
(universal distribution function). Also the form of f (x) has
been debated and several proposals have been put forward in
the literature [1, 3, 4].

A persuasive physical explanation of the scale invariance
has been provided by Mulheran and Blackman [4, 5], who
identified it with the invariance of the Voronoi tessellation [9]
associated to the nucleation centers. This is all the more true

the faster the nucleation process is. This finds a confirmation
in the very high value of the parameter R = D/F used
in the kinetic Monte Carlo simulations (D is the diffusion
coefficient of monomers, F is the impinging flux). The reason
is that the faster the nucleation is, the faster the saturation
number of nuclei is reached and the faster the asymptotic
tessellation is achieved. The fact that the invariance of the
Voronoi tessellation warrants a scale invariance depends on
the fact that each nucleus grows, on average, proportionally to
the area of its associated Voronoi polygon (Vp), that is, to the
area on which it exerts influence [10]. Venables and Bell [11]
named this area as the capture zone. It is quite clear that the
distribution of dot sizes must resemble the distribution of the
Vps associated to nucleation centers1. The latter has been
suggested by Kiang [12] who conjectured that the exact 1D

1 To be right one should consider the Voronoi edge–edge tessellation or
the diffusion cells [10] because of dot growth; however, in the case of fast
nucleation and low nuclei density, Voronoi tessellation referred to the nuclei is
a good approximation [16].
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Figure 1. Sketch of the employed model. The lines (steps) are
chosen along the x direction on a square lattice possibly with a
correlation length sx . The dots (centers of the islands or quantum
dots) are chosen along the lines, possibly with a correlation
length dy .

distribution form is valid in any dimension; the distribution is

fβ(x) = ββ

�(β)
xβ−1e−βx , (2)

where β ∈ R is a parameter and �(x) is the Euler’s gamma
function, x = s/〈s〉. It is also evident that once the
nuclei become larger and larger, tessellation begins changing
noticeably and the invariance is lost even before coalescence
or impingement takes place.

The capture zone interpretation of the scale invariance
promptly implies that its emergence is not limited to a 2D
island growth, but can be extended to the 3D case as well,
provided the number of monomers making up islands is
taken into account. This is exactly what Ebiko et al [13]
have shown to hold in the case of InAs quantum dots on
GaAs(001) substrate. Their results have been subsequently
confirmed by Krzyzewski et al [14] and Arciprete et al
[15]. In all these studies the authors used the Amar and
Family (AF) [3] universal function to justify the experimental
results. Nevertheless, in a recent paper [16] it has been
demonstrated experimentally that, when the nucleation is a
reasonably fast process, conditions come into play for which
the scale invariance directly follows; during thin film formation
characterized by nucleation and growth, in a certain range
of coverage. The authors demonstrate that the equation (2)
is the more appropriate distribution function, in contrast to
other studies [13–15]. Incidentally, Ebiko et al [13] explicitly
declare that the AF function follows the experimental behavior
only qualitatively. In [16] the invariance is proved by fitting
the experimental data to equation (2) and showing that the β

parameter remains constant within a certain range of coverage.
In [13, 14] it is displayed that the scaled distributions of

dot volume collapse, within the experimental error, into the
same curve, yet no fit to any function is worked out. We have
digitized and fitted to equation (2) the distributions showed

Figure 2. Example of Voronoi tessellation for a 1000 × 1000 lattice
with 20 steps and 20 dots per step. The code, on the contrary, on a
square lattice 6000 × 6000, chooses 3600 dots distributed along
60 steps, 60 dots per step.

in figure 3(b) of [13] and figure 2(d) of [14]. While the
distribution of [13] returns β ∼= 4.5, the same as in [16], that
of [14] returns β ∼= 2.9. At first sight, this seems a peculiar
result given that β ∼= 3.6 [4] corresponds to a Poissonian
spatial distribution of nuclei.

This brief report is devoted to demonstrating that a similar
value is not strange at all, and may be due to the presence of
steps, where, it has been established by now, that nucleation
takes place [17].

The substrate has been represented by a 6000 × 6000
square lattice where 3600 points, representing the centers of the
dots (DC), have been chosen with the following criteria. Along
the x-axis the code chooses randomly 60 values: they are the
coordinates of the steps. Along the y-axis in correspondence
to each step coordinate, 60 values are chosen at random. In
figure 1(a) rescaled sketch has been reported merely to clarify
graphically the structure of the model employed. Once the
dot coordinates are established, the program generates the
associated Voronoi tessellation and the relative distribution
of the areas of the Voronoi cells (VCs) are calculated. In
figure 2 has been reported a typical Voronoi diagram, that, so
as to make the picture clearer, refers to a 1000 × 1000 lattice
where 20 steps and 20 dots per step have been chosen. In
order to reduce the noise of a single distribution the above-
mentioned procedure has been repeated ten times and from the
average distribution fitted to equation (2), the β value has been
determined. In all, we determined three values of β for as
many average distributions and their mean and half maximum
deviation provide the final β and its error, respectively. The
average value is β = 1.54 ± 0.04 which has to be compared
with β ∼= 3.5 received when nucleation takes place at random
throughout the entire substrate. The variances of the two
distributions are, respectively, 0.65 and 0.29 (figure 3). In
other words, this result suggests that in the presence of steps,
there is a larger variety of cell areas and consequently a greater
disorder. The latter statement can be demonstrated as follows.

2



J. Phys.: Condens. Matter 20 (2008) 015222 M Fanfoni

Table 1. Values of β as a function of spatial correlation among steps (sx ) and among dots (dy). In this case d = sx = dy (see the text).

d 0 10 20 30 40 50 60
β 1.54 ± 0.04 1.93 ± 0.09 2.45 ± 0.06 3.2 ± 0.1 4.65 ± 0.15 6.5 ± 0.4 10.9 ± 0.7

Figure 3. Comparison between the distribution function of the
Voronoi areas obtained from stepless (triangles) and stepped
(squares) substrates. The variances are 0.29 and 0.65, respectively.
In both cases all the correlation lengths are zero.

Let us consider a square of area A and the stochastic
variable N1 which describes the number of DCs contained
in A. Let us figure out the probability that N1 = n, where
0 � n < ∞. The step coordinates are independent of those of
DCs. Inside A there can be k steps each of which contains ni

DCs in such a way that
∑k

i=1 ni = n; moreover 1 � k < ∞.
Summing up over all k values and adding the probability of
finding no steps inside A, one ends up with

Pmx ,my (N1 = n) = χne−mx + e−mx

[
mxmn

y

n! e−my

+
∑

(n1,n2,...,nk )n

mk
x m

∑k
i ni

y

n1!n2! . . . nk !
e−kmy

k!
]

= e−mx

[
χn + mn

y

n!
∞∑

k=1

mk
x

kn

k! e−kmy

]
(3)

where mx = ρx

√
A and m y = ρy

√
A being ρx and ρy

the number densities per unit length along x and y direction,
respectively. χn = 1 if n = 0 while χn = 0 if n �= 0.
(n1, n2, . . . , nk)n indicates the set of all the k-tuples of integers
such that

∑k
i ni = n. In contrast, the probability of finding

N2 = n DCs inside a square of area A for a Poissonian
distribution of DCs is

Pm(N2 = n) = mn

n! e−m (4)

where m = ρxρy A. It is then possible to calculate the variance
of the two expressions equation (3) and equation (4) in the
case m = m1 = m2 = 1 obtaining Var(N1) = 2.97 and
Var(N2) = 1, respectively. This result confirms that in the
presence of steps, disorder increases.

The determination of the Voronoi tessellation can also be
performed for correlated dots, the centers of which are chosen

Figure 4. Simulations and relative curve fit for:
(a) sx = dy = d = 0; (b) sx = dy = d = 30; (c) sx = dy = d = 60.

according to the rule that two steps coordinates cannot lie
closer than a distance sx while two y-dot coordinates cannot
lie closer than a distance dy on a given step.

In table 1 we have reported the value of β for some spatial
correlations, when sx = dy = d . These are measured in lattice
units.

We need to note that equation (2) is not particularly
suitable for describing the VC area distribution as the degree
of correlation increases. Incidentally, this is true for a stepless
substrate as well. In figure 4 we report, just to give an
idea, three distributions and as many curve fits for as many
correlation lengths.
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Before concluding the article I would like to quote a very
recent paper by Pimpinelli and Einstein [18] who proposed
a new simple distribution function: the generalized Wigner
surmise distribution, in substitution of equation (2). As a
matter of fact, it is worth underlining again that the exact
analytical form of the distribution function for the Voronoi
diagram is known only for 1D case and that distribution
function equation (2) is only an arbitrary extension of the 1D
solution for higher dimensions. Although their proposal needs
checking, it could constitute a valuable advance because it
makes it possible to determine, for example, the dimension of
the critical nucleus.

In conclusion, we have demonstrated that on a stepped
substrate the distribution function of island size is altered with
respect to that on a stepless substrate becoming larger. This
result makes it possible to explain the ‘anomalous’ β value got
from the distribution published in [14]. We have learned how
distribution of steps influences the size distribution of islands
or dots in thin film growth.
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